📖
Cerulean Sonar Docs
Docs DirectoryStore
Ethernet ROV Locator
Ethernet ROV Locator
  • ROV Locator
  • Overview
  • General Specifications
  • Quick Start for BlueROV
  • Fundamentals Useful to System Designers
    • Sound Reflection and Absorption
    • Multipath
    • Ping Length
    • What to Do About Multipath and Other Issues
    • Clock Drift Expectations
    • Accuracy Expectations
      • Accuracy Test: Topside GPS
      • Accuracy Test: 110 Meter Slant Range
      • Accuracy Test: 295 Meter Slant Range
    • Operation in a Pool
  • Configuring the ROVLe
    • Finding the Configuration Web Page
    • Example Configuration Web Page
    • Live Status Page
    • Setting Device Type
    • Setting the Static IP Address
    • Setting the Fallback IP Address
    • Setting the MAVLink REST Server Parameters
    • Setting the Secondary (GNSS) MAVLink Interface
    • GPS/GNSS Forwarding (Re-tweeting)
    • Magnetic Declination
    • CIMU Calibration Offsets
    • Speed of Sound
    • GNSS Antenna Mounting Rotation
    • Output Messages
    • Configure Simulation
  • System Variants
  • Autosync
    • Autosync Mission Scenarios and Mission Suitability
    • Autosync Availability
    • Autosync GPS/GNSS Output
    • ROVL Channels (Autosync only; Operating Multiple Units in Proximity)
  • Communicating With the ROVL
    • Serial Parameters
    • The Ethernet Interface
      • Tips on How to Find the IP Address Assigned to Your Ethernet Adapter
      • Blue Robotics Discovery Protocol (Ethernet Only)
    • Packet Format
    • Messages from ROVL to Host
      • $USRTH Receiver-Transmitter Relative Angles Message
      • $USTLC Target Location Message
      • $USINF/$USTXT Information Message
      • $USERR Error Message
      • $USNVM Non-Volatile Memory Message
    • Messages from Host to ROVL
      • NMEA-Format Messages to Receiver
      • Valid Commands from Host to ROVL, Serial and Ethernet
      • Valid Commands from Host to ROVL, Ethernet Only
        • Command: DHCP
        • Command: FALLBACK-ADDRESS
        • Command: IP-ADDRESS
        • Command: HOST-ADDRESS
        • Command: MAVLINK-ADDRESS
        • Command: MAVLINK-AUTO-ORIGIN
        • Command: MAVLINK-SYSID
        • Command: PAUSE
        • Command: RESUME
        • Command: RETWEET-GPS
        • Command: RETWEET-GPS-ADDRESS
        • Command: RETWEET-message
        • Command: SEND-ROV-POS-TO-MAP
        • Command: SEND-TOPSIDE-TO-MAP
        • Command: SEND-USRTH
        • Command: SEND-USTLC
        • Command: UNICAST-TO-ME
  • Cerulean Inertial Measurement Unit (CIMU)
    • CIMU Calibration Background
      • CIMU Magnetometer Calibration
      • CIMU Accelerometer Calibration
      • CIMU Gyro Calibration
  • Operating and Accuracy Considerations
  • Multi-Unit Operation (Swarms)
    • Multi-Unit 1:1
    • Multi-Unit 1:2
    • Multi-Unit 2x1:1
  • ROVL Mounting
    • ROV/Deepside Mounting
    • Topside Mounting
    • Simple Topside Deployment Fixture
  • ROVL Wiring
    • Standard Cabling Options
    • ROVL-e PC Board Internal Connections
      • JST-GH Connector Pin 1 Identification
      • Ethernet/Power Connections
      • Serial Connection
      • USB Connection
      • GNSS Compass Main (4-pin) RS-232 Connection
      • GNSS Compass RTK (2-pin) RS-422 Connection
    • Electrical Noise
  • Connecting and Powering Your ROVLe Ethernet Receiver or Transceiver
    • Example Power Injectors
    • Data Connection
    • Example Power/Wi-Fi Setup for Remote Usage
    • Battery
  • Mounting Dimensions
    • Mk II Receiver with Omnitrack Top
    • Transmitter/Transceiver/Receiver with Standard Top
    • Mk III Transcceiver
    • ROVLe Omnitrack Top
    • ROVLe Standard Top
    • Example Mounting Scheme with 3D-Printed Bracket
  • ROVL Coordinate Systems and Angles
    • Definitions
    • NED or "Compass" vs. ENU or "Math" Angles
    • Math to Compass Frame Conversions
    • Transducer Down Orientation
    • Transducer Up Orientation
    • Receiver/Transceiver Orientation Frames
    • Best Operating Envelope
  • Appendix: Math for Computing Remote Latitude/Longitude
    • Receiver & GPS at Topside and Transmitter Deepside
    • Transmitter & GPS Topside and Receiver Deepside
  • Appendix: Factory Usage Command Set
  • Troubleshooting
    • How to Tell if Your Mk II Receiver is Working
    • How to tell if your Mk II Transmitter is working
    • What to do when you find an unresolvable problem when troubleshooting
  • Copyright
Powered by GitBook
On this page
  1. Cerulean Inertial Measurement Unit (CIMU)
  2. CIMU Calibration Background

CIMU Gyro Calibration

PreviousCIMU Accelerometer CalibrationNextOperating and Accuracy Considerations

The gyros are subject to slight aging effects, and to temperature effects. Generally, you really only need to calibrate these every three to six months.

Since inertial space is uniform everywhere (at least within the measurement capability of the sensors), you can run the calibration anywhere there is a solid, stable surface. Generally a boat will not be stable enough unless the wind is dead calm. To begin, set the device in a completely stable position (on its nose usually works well) click the "Gyro Accel Cal" button as seen in the figure below.

The system will collect a few hundred points. You don't need to do anything else during data collection.

After the data is collected and the calibration parameters are calculated, the cube remains in the display. Let the device sit for a few minutes. The cube should move only slightly over that time, and mostly in a slight back-and-forth manner.

If you like what you have collected, you can click the "Commit Gyro" button and the parameters will be sent to the device to overwrite the previous parameters. If you're finished, click the "Exit" button.

Begin a Gyro calibration by clicking the "Calc Gyro Cal" button (highlighted)
Gyro calibration data collection in progress.
The gyro display two minutes after calibration, This is an acceptable amount of movement post-calculation.