đź“–
Cerulean Sonar Docs
Docs DirectoryStore
ROV Locator
ROV Locator
  • ROV Locator
  • Overview
  • General Specifications Mk II
  • General Specifications Mk III
  • System Variants
  • Fundamentals Useful to System Designers
    • Sound Reflection and Absorption
    • Multipath
    • Ping Length
    • What to Do About Multipath and Other Issues
    • Clock Drift Expectations
    • Accuracy Expectations
      • Accuracy Test: Topside GPS
      • Accuracy Test: 110 Meter Slant Range
      • Accuracy Test: 295 Meter Slant Range
    • Operation in a Pool
  • Autosync Option (Mk II Only)
    • Autosync Mission Scenarios and Mission Suitability
    • Autosync Availability
    • Autosync GPS/GNSS Output
  • ROVL Channels (Autosync only; Operating Multiple Units in Proximity)
  • ROVL Coordinate Systems and Angles
    • Definitions
    • NED or “Compass” vs. ENU or “Math” Angles
    • Math to Compass Frame Conversions
    • Transducer Down Orientation
    • Transducer Up Orientation
    • Receiver/Transceiver Orientation Frames
    • Best Operating Envelope
  • Communicating With the ROVL
    • Serial Parameters
    • Packet Format
    • Messages from ROVL to Host
      • $USRTH Receiver-Transmitter Relative Angles Message
      • $USINF Information Message
      • $USERR Error Message
    • Messages from Host to ROVL
      • NMEA-Format Messages to Receiver
      • Valid Commands from Host to ROVL
  • Inertial Measurement Unit (IMU)
    • How To Tell Which IMU is Active
    • Mk II IMU Modes and Calibration
      • Mk II IMU Calibration Background
      • Mk II IMU Calibration General Procedures
    • CIMU Calibration Background
      • CIMU Magnetometer Calibration
      • CIMU Accelerometer Calibration
      • CIMU Gyro Calibration
  • Operating and Accuracy Considerations
  • Multi-Unit Operation (Swarms)
    • Multi-Unit 1:1
    • Multi-Unit 1:2
    • Multi-Unit 2x1:1
    • Multi-Unit n:1 (fixed transmitter)
    • Multi-Unit n:1 (mobile transmitter)
  • ROVL Mounting and Wiring
    • ROV/Deepside Mounting
    • Topside Mounting
    • Simple Topside Deployment Fixture
    • Wiring Notes
    • Electrical Noise
    • USB Interface using Blue Robotics BLUART Board
  • Mechanical Drawings
    • Mounting Footprint and Envelope, "S" Package
    • Mounting Footprint ("P" Package Mk II and Mk III)
    • Envelope Drawing. "P" Package ROVL Mk II Transmitter and Receiver, Mk III Transponder
  • Appendix: Math for Computing Remote Latitude/Longitude
    • Receiver & GPS at Topside and Transmitter Deepside
    • Transmitter & GPS Topside and Receiver Deepside
  • Appendix: Factory Usage Command Set
  • Troubleshooting
    • How to Tell if Your Mk II Receiver is Working
    • How to tell if your Mk II Transmitter is working
    • What to do when you find an unresolvable problem when troubleshooting
  • Copyright
Powered by GitBook
On this page
  1. Fundamentals Useful to System Designers
  2. Accuracy Expectations

Accuracy Test: 295 Meter Slant Range

PreviousAccuracy Test: 110 Meter Slant RangeNextOperation in a Pool

Last updated 6 months ago

The scatter of ROV positions at 295 meters covers a band about 35 meters long. About 90 percent of the error is in the transceiver measuring the relative bearing to the transponder, plus the IMU heading error. This scatter shows about +/- 2.5 degrees error in relative bearing, likely due to phase measurement errors.

The slant range error is partly GPS error and partly slant range measurement due to multipath.

You can see there are two separate bands of positions. Initially, we cut a hole right at 300 meters and took a few measurements. However, the total range allowed is hard-limited to 300 meters (to prevent interference from adjacent systems) and was affecting another aspect of this test, so we moved 5 meters closer to the transponder.

295 Meter Slant Range Plot