đź“–
Cerulean Sonar Docs
Docs DirectoryStore
ROV Locator
ROV Locator
  • ROV Locator
  • Overview
  • General Specifications Mk II
  • General Specifications Mk III
  • System Variants
  • Fundamentals Useful to System Designers
    • Sound Reflection and Absorption
    • Multipath
    • Ping Length
    • What to Do About Multipath and Other Issues
    • Clock Drift Expectations
    • Accuracy Expectations
      • Accuracy Test: Topside GPS
      • Accuracy Test: 110 Meter Slant Range
      • Accuracy Test: 295 Meter Slant Range
    • Operation in a Pool
  • Autosync Option (Mk II Only)
    • Autosync Mission Scenarios and Mission Suitability
    • Autosync Availability
    • Autosync GPS/GNSS Output
  • ROVL Channels (Autosync only; Operating Multiple Units in Proximity)
  • ROVL Coordinate Systems and Angles
    • Definitions
    • NED or “Compass” vs. ENU or “Math” Angles
    • Math to Compass Frame Conversions
    • Transducer Down Orientation
    • Transducer Up Orientation
    • Receiver/Transceiver Orientation Frames
    • Best Operating Envelope
  • Communicating With the ROVL
    • Serial Parameters
    • Packet Format
    • Messages from ROVL to Host
      • $USRTH Receiver-Transmitter Relative Angles Message
      • $USINF Information Message
      • $USERR Error Message
    • Messages from Host to ROVL
      • NMEA-Format Messages to Receiver
      • Valid Commands from Host to ROVL
  • Inertial Measurement Unit (IMU)
    • How To Tell Which IMU is Active
    • Mk II IMU Modes and Calibration
      • Mk II IMU Calibration Background
      • Mk II IMU Calibration General Procedures
    • CIMU Calibration Background
      • CIMU Magnetometer Calibration
      • CIMU Accelerometer Calibration
      • CIMU Gyro Calibration
  • Operating and Accuracy Considerations
  • Multi-Unit Operation (Swarms)
    • Multi-Unit 1:1
    • Multi-Unit 1:2
    • Multi-Unit 2x1:1
    • Multi-Unit n:1 (fixed transmitter)
    • Multi-Unit n:1 (mobile transmitter)
  • ROVL Mounting and Wiring
    • ROV/Deepside Mounting
    • Topside Mounting
    • Simple Topside Deployment Fixture
    • Wiring Notes
    • Electrical Noise
    • USB Interface using Blue Robotics BLUART Board
  • Mechanical Drawings
    • Mounting Footprint and Envelope, "S" Package
    • Mounting Footprint ("P" Package Mk II and Mk III)
    • Envelope Drawing. "P" Package ROVL Mk II Transmitter and Receiver, Mk III Transponder
  • Appendix: Math for Computing Remote Latitude/Longitude
    • Receiver & GPS at Topside and Transmitter Deepside
    • Transmitter & GPS Topside and Receiver Deepside
  • Appendix: Factory Usage Command Set
  • Troubleshooting
    • How to Tell if Your Mk II Receiver is Working
    • How to tell if your Mk II Transmitter is working
    • What to do when you find an unresolvable problem when troubleshooting
  • Copyright
Powered by GitBook
On this page
  1. Multi-Unit Operation (Swarms)

Multi-Unit 2x1:1

PreviousMulti-Unit 1:2NextMulti-Unit n:1 (fixed transmitter)

Last updated 6 months ago

The Multi-Unit 2x1:1 case has two independent transmitters on ROVs or divers, with each transmitter on a different channel. A separate receiver tracks each transmitter.

The position of each transmitter is updated once per second.

If a topside GPS is associated with each receiver, the absolute (latitude/longitude) position of each transmitter can be known.

The Mk II Autosync model is the only ROVL model that can operate on two channels. In order to maintain clock synchronization, all four units must surface and re-acquire the GPS signal periodically (every hour or two).

The 2x1:1 case is supported by CeruleanTracker and CeruleanMap software (each pair reports to their own PC running CeruleanTracker). Additionally, users can write their own software to make of of the positional information created.

If the PCs are networked together the communication between CeruleanTracker and CeruleanMap will interfere with each other. If user-generated software is used to communicate directly with receivers and process the information, then it is possible to connect both receivers to a single PC.

Only one instance of CeruleanTracker can run on a single PC.

Only one instance of CeruleanMap can run on a single PC.

Two independent receivers, each tracking their own independent transmitter