đź“–
Cerulean Sonar Docs
Docs DirectoryStore
ROV Locator
ROV Locator
  • ROV Locator
  • Overview
  • General Specifications Mk II
  • General Specifications Mk III
  • System Variants
  • Fundamentals Useful to System Designers
    • Sound Reflection and Absorption
    • Multipath
    • Ping Length
    • What to Do About Multipath and Other Issues
    • Clock Drift Expectations
    • Accuracy Expectations
      • Accuracy Test: Topside GPS
      • Accuracy Test: 110 Meter Slant Range
      • Accuracy Test: 295 Meter Slant Range
    • Operation in a Pool
  • Autosync Option (Mk II Only)
    • Autosync Mission Scenarios and Mission Suitability
    • Autosync Availability
    • Autosync GPS/GNSS Output
  • ROVL Channels (Autosync only; Operating Multiple Units in Proximity)
  • ROVL Coordinate Systems and Angles
    • Definitions
    • NED or “Compass” vs. ENU or “Math” Angles
    • Math to Compass Frame Conversions
    • Transducer Down Orientation
    • Transducer Up Orientation
    • Receiver/Transceiver Orientation Frames
    • Best Operating Envelope
  • Communicating With the ROVL
    • Serial Parameters
    • Packet Format
    • Messages from ROVL to Host
      • $USRTH Receiver-Transmitter Relative Angles Message
      • $USINF Information Message
      • $USERR Error Message
    • Messages from Host to ROVL
      • NMEA-Format Messages to Receiver
      • Valid Commands from Host to ROVL
  • Inertial Measurement Unit (IMU)
    • How To Tell Which IMU is Active
    • Mk II IMU Modes and Calibration
      • Mk II IMU Calibration Background
      • Mk II IMU Calibration General Procedures
    • CIMU Calibration Background
      • CIMU Magnetometer Calibration
      • CIMU Accelerometer Calibration
      • CIMU Gyro Calibration
  • Operating and Accuracy Considerations
  • Multi-Unit Operation (Swarms)
    • Multi-Unit 1:1
    • Multi-Unit 1:2
    • Multi-Unit 2x1:1
    • Multi-Unit n:1 (fixed transmitter)
    • Multi-Unit n:1 (mobile transmitter)
  • ROVL Mounting and Wiring
    • ROV/Deepside Mounting
    • Topside Mounting
    • Simple Topside Deployment Fixture
    • Wiring Notes
    • Electrical Noise
    • USB Interface using Blue Robotics BLUART Board
  • Mechanical Drawings
    • Mounting Footprint and Envelope, "S" Package
    • Mounting Footprint ("P" Package Mk II and Mk III)
    • Envelope Drawing. "P" Package ROVL Mk II Transmitter and Receiver, Mk III Transponder
  • Appendix: Math for Computing Remote Latitude/Longitude
    • Receiver & GPS at Topside and Transmitter Deepside
    • Transmitter & GPS Topside and Receiver Deepside
  • Appendix: Factory Usage Command Set
  • Troubleshooting
    • How to Tell if Your Mk II Receiver is Working
    • How to tell if your Mk II Transmitter is working
    • What to do when you find an unresolvable problem when troubleshooting
  • Copyright
Powered by GitBook
On this page

Fundamentals Useful to System Designers

This section has information to help you decide if one of our ROVL systems will work for you, and how to get the most from your ROVL system.

We're going to talk about all the things that can go wrong with sonar systems, and at the end of this, you're going to wonder if there's a snowflake's chance in hell of getting your ROVL system working. Despite all the possible challenges, most ROVL systems work as expected right out of the box. The information in this section is included to help troubleshoot systems in the minority of cases where there are issues, and help you design more robust systems if you are trying something unique or an application we haven't foreseen.

This explanation in this section is extremely simplified. The field of acoustics is quite complex and is far beyond the scope of a user manual. However, the concepts presented here are fairly straightforward and will get you a long way toward having a useful localization system.

PreviousSystem VariantsNextSound Reflection and Absorption

Last updated 6 months ago