đź“–
Cerulean Sonar Docs
Docs DirectoryStore
ROV Locator
ROV Locator
  • ROV Locator
  • Overview
  • General Specifications Mk II
  • General Specifications Mk III
  • System Variants
  • Fundamentals Useful to System Designers
    • Sound Reflection and Absorption
    • Multipath
    • Ping Length
    • What to Do About Multipath and Other Issues
    • Clock Drift Expectations
    • Accuracy Expectations
      • Accuracy Test: Topside GPS
      • Accuracy Test: 110 Meter Slant Range
      • Accuracy Test: 295 Meter Slant Range
    • Operation in a Pool
  • Autosync Option (Mk II Only)
    • Autosync Mission Scenarios and Mission Suitability
    • Autosync Availability
    • Autosync GPS/GNSS Output
  • ROVL Channels (Autosync only; Operating Multiple Units in Proximity)
  • ROVL Coordinate Systems and Angles
    • Definitions
    • NED or “Compass” vs. ENU or “Math” Angles
    • Math to Compass Frame Conversions
    • Transducer Down Orientation
    • Transducer Up Orientation
    • Receiver/Transceiver Orientation Frames
    • Best Operating Envelope
  • Communicating With the ROVL
    • Serial Parameters
    • Packet Format
    • Messages from ROVL to Host
      • $USRTH Receiver-Transmitter Relative Angles Message
      • $USINF Information Message
      • $USERR Error Message
    • Messages from Host to ROVL
      • NMEA-Format Messages to Receiver
      • Valid Commands from Host to ROVL
  • Inertial Measurement Unit (IMU)
    • How To Tell Which IMU is Active
    • Mk II IMU Modes and Calibration
      • Mk II IMU Calibration Background
      • Mk II IMU Calibration General Procedures
    • CIMU Calibration Background
      • CIMU Magnetometer Calibration
      • CIMU Accelerometer Calibration
      • CIMU Gyro Calibration
  • Operating and Accuracy Considerations
  • Multi-Unit Operation (Swarms)
    • Multi-Unit 1:1
    • Multi-Unit 1:2
    • Multi-Unit 2x1:1
    • Multi-Unit n:1 (fixed transmitter)
    • Multi-Unit n:1 (mobile transmitter)
  • ROVL Mounting and Wiring
    • ROV/Deepside Mounting
    • Topside Mounting
    • Simple Topside Deployment Fixture
    • Wiring Notes
    • Electrical Noise
    • USB Interface using Blue Robotics BLUART Board
  • Mechanical Drawings
    • Mounting Footprint and Envelope, "S" Package
    • Mounting Footprint ("P" Package Mk II and Mk III)
    • Envelope Drawing. "P" Package ROVL Mk II Transmitter and Receiver, Mk III Transponder
  • Appendix: Math for Computing Remote Latitude/Longitude
    • Receiver & GPS at Topside and Transmitter Deepside
    • Transmitter & GPS Topside and Receiver Deepside
  • Appendix: Factory Usage Command Set
  • Troubleshooting
    • How to Tell if Your Mk II Receiver is Working
    • How to tell if your Mk II Transmitter is working
    • What to do when you find an unresolvable problem when troubleshooting
  • Copyright
Powered by GitBook
On this page

Operating and Accuracy Considerations

PreviousCIMU Gyro CalibrationNextMulti-Unit Operation (Swarms)

Last updated 6 months ago

Like all sonar systems, the ROVL system is affected by multipath. Reflections from the ROV body, the surface and bottom of the water body, environmental objects, launching platform body, thermoclines, etc. all can degrade accuracy and can cause ghost solutions. Multipath often manifests itself as random spurious solutions interspersed with good solutions. Spurious solutions can sometimes be filtered out.

Aquatic vegetation between the system elements can and will cause severe signal attenuation and phase disturbance of the signals.

Examples of sources of multipath interference