📖
Cerulean Sonar Docs
Docs DirectoryStore
DVL-75
DVL-75
  • DVL-75
  • Overview
    • General Specifications
    • General Use Cases
    • The Basic System
    • System Components
    • Comparison of Tracker 650 and DVL-75
  • Usage Considerations and Scenarios
    • General Usage
    • Scenario: GPS Emulation
    • Scenario: Holding Position
    • Scenario: Autonomous Waypoint Navigation
    • Scenario: Returning to a Series of Known Positions
    • Scenario: Returning to Home
    • Scenario: Using GPS Assist
    • Scenario: Doing Your Own Dead Reckoning
    • Additional Connection Possibilities
    • General Hints and Tips
    • Operation in a Pool
  • Using MAVLink and BlueOS for Position Hold on a BlueROV2
    • ArduPilot Parameters
    • DVL Setup for MAVlink Support
  • Using Other Than the Bottom for the DVL (Side-Tracking Capability)
    • Side-Tracking Capability Design Use-Cases
    • Side-Tracking Capability Considerations
  • Mounting the DVL Components
    • Sensor Head Typical Mounting
    • Sensor Head Side-Tracking Mounting Alignment
    • All-in-One and Most-in-One Mounting Considerations
    • Mounting the Electronics Stack
    • Mounting an Auxiliary GPS
  • Assembling the Electronics Stack
    • Cerulean 300m Electronics Enclosure Assembly
  • Inertial Measurement Unit (IMU)
    • Baseline IMU Calibrations
    • Baseline IMU Background
    • Baseline IMU Blind Initial Calibration Procedure
    • Baseline IMU Status-Assisted Initial Calibration Procedure
    • Baseline IMU Calibration for Each Mission or Each Time Power is Applied
    • Upgraded IMU Calibration for Each Mission or Each Time Power is Applied
  • Communicating with the DVL
    • Factory Defaults and Default Messages
    • The Ethernet Interface
    • Tips on How to Find the IP Address Assigned to Your Ethernet Adapter
    • The Serial Interface
    • Resetting the Communications Parameters to Factory Default
    • What Do the LEDs Mean?
    • Outgoing Message Formats, DVL to Host
      • $GPRMC: NMEA standard Recommended Minimum GPS/Transit Data
      • $DVEXT: DVL Extended Data
      • $DVPDL: DVL Position and Angle Deltas Message
      • Freeform Error and Informational messages ($DVTXT)
      • Re-Tweeted GPS Messages
      • Re-Tweeted IMU Messages (IMU Raw Data)
      • $DVKFA, $DVKFB Kalman Filter Support Messages
        • Driving your own Kalman Filter
    • Commands Accepted by the DVL
      • $GPRMC
      • SET-POSITION
      • CONFIGURATION
      • SUPPRESS-GPS
      • DECLINATION
      • SET-SPEED-OF-SOUND
      • SET-VELOCITY-ADJUSTMENT
      • SEND-GPRMC
      • SEND-DVEXT
      • SEND-DVKFA
      • SEND-DVKFB
      • SEND-FREEFORM
      • SEND-DVPDL
      • RETWEET-GPS
      • RETWEET-IMU
      • SET-SENSOR-ORIENTATION
      • GRAB-IMU-CAL
      • VOID-IMU-CAL
      • BAUD-RATE
      • IP-ADDRESS
      • HOST-ADDRESS
      • MAVLINK-ADDRESS
      • FALLBACK-ADDRESS
      • UNICAST-TO-ME
      • PAUSE
      • RESUME
      • REBOOT
    • Blue Robotics Ping360 Discovery Protocol (Ethernet Only)
    • ARP (Address Resolution Protocol)
    • DHCP (Dynamic Host Configuration Protocol)
    • Ping (Internet Control Message Protocol Ping)
    • Mechanical Drawings
      • Mounting Dimensions, Sensor Head
      • Mounting Dimensions, Electronics Stack
      • RAM Mount Adapter Plate
      • Electronics Stack Assembly Drawing
      • Mounting Bracket for 300m Electronics Enclosure
      • Mounting Bracket for Sensor Head or Electronics Enclosure, fits BlueROV2 Heavy Thruster Guard
      • Mounting Bracket for All-in-One Enclosure, fits BlueROV2 Heavy Thruster Guard
      • Mounting Dimensions, Cerulean 300m Enclosure
      • Mounting Dimensions for the Cerulean All-in-One Enclosure
      • Mounting Dimensions, Cerulean GPS
  • Electrical Drawings
    • Serial Cable Supplied with Baseline Electronics Stack
    • DVL Serial Connection Example
    • Power over Ethernet (POE) Cabling
    • Standard Ethernet Pinouts
    • Optional GPS Wiring
    • Sensor Head Wiring
    • Using External Power with Serial Cable
    • Serial to USB Interface Using Blue Robotics BLUART Board
  • CAD Models
  • Appendix – Coordinate Systems
  • Copyright
Powered by GitBook
On this page
  1. Communicating with the DVL
  2. Outgoing Message Formats, DVL to Host
  3. $DVKFA, $DVKFB Kalman Filter Support Messages

Driving your own Kalman Filter

The $DVKFA and $DVKFB messages can be used to drive your own Kalman filter. Here's a brief list of what you need to do.

  1. Decide if you are going to use the DVL's IMU or your own IMU, or a combination. You could use the DVL's roll and pitch and you own heading reference, for example.

  2. The velocities are give as along-track velocities on the sensor cone axis. You need to use your knowledge of how you mounted the sensor head and what you are pointing at to get the angle the sensor cone makes with the reflecting surface. For example, if the sensor head is mounted on your vehicle pointing straight down with the X-axis forward, and the vehicle is pitched down 5 degrees, and you are assuming the seabed is flat, then the along-track velocity V-A is is the +X sensor reported velocity V-R divided by sine[ down-angle + 5 degrees ] (converesly, the along-track velocity V-B is the -X sensor reported velocity divided by sine[down-angle - 5 degrees]). You will use different transforms if the sensor head is, for example, pointed sideways at a vertical surface.

  3. You can use the locked and confidence values and your own transfer function to set the covariance of the velocity for each channel.

Previous$DVKFA, $DVKFB Kalman Filter Support MessagesNextCommands Accepted by the DVL

Last updated 2 years ago