📖
Cerulean Sonar Docs
Docs DirectoryStore
DVL-75
DVL-75
  • DVL-75
  • Overview
    • General Specifications
    • General Use Cases
    • The Basic System
    • System Components
    • Comparison of Tracker 650 and DVL-75
  • Usage Considerations and Scenarios
    • General Usage
    • Scenario: GPS Emulation
    • Scenario: Holding Position
    • Scenario: Autonomous Waypoint Navigation
    • Scenario: Returning to a Series of Known Positions
    • Scenario: Returning to Home
    • Scenario: Using GPS Assist
    • Scenario: Doing Your Own Dead Reckoning
    • Additional Connection Possibilities
    • General Hints and Tips
    • Operation in a Pool
  • Using MAVLink and BlueOS for Position Hold on a BlueROV2
    • ArduPilot Parameters
    • DVL Setup for MAVlink Support
  • Using Other Than the Bottom for the DVL (Side-Tracking Capability)
    • Side-Tracking Capability Design Use-Cases
    • Side-Tracking Capability Considerations
  • Mounting the DVL Components
    • Sensor Head Typical Mounting
    • Sensor Head Side-Tracking Mounting Alignment
    • All-in-One and Most-in-One Mounting Considerations
    • Mounting the Electronics Stack
    • Mounting an Auxiliary GPS
  • Assembling the Electronics Stack
    • Cerulean 300m Electronics Enclosure Assembly
  • Inertial Measurement Unit (IMU)
    • Baseline IMU Calibrations
    • Baseline IMU Background
    • Baseline IMU Blind Initial Calibration Procedure
    • Baseline IMU Status-Assisted Initial Calibration Procedure
    • Baseline IMU Calibration for Each Mission or Each Time Power is Applied
    • Upgraded IMU Calibration for Each Mission or Each Time Power is Applied
  • Communicating with the DVL
    • Factory Defaults and Default Messages
    • The Ethernet Interface
    • Tips on How to Find the IP Address Assigned to Your Ethernet Adapter
    • The Serial Interface
    • Resetting the Communications Parameters to Factory Default
    • What Do the LEDs Mean?
    • Outgoing Message Formats, DVL to Host
      • $GPRMC: NMEA standard Recommended Minimum GPS/Transit Data
      • $DVEXT: DVL Extended Data
      • $DVPDL: DVL Position and Angle Deltas Message
      • Freeform Error and Informational messages ($DVTXT)
      • Re-Tweeted GPS Messages
      • Re-Tweeted IMU Messages (IMU Raw Data)
      • $DVKFA, $DVKFB Kalman Filter Support Messages
        • Driving your own Kalman Filter
    • Commands Accepted by the DVL
      • $GPRMC
      • SET-POSITION
      • CONFIGURATION
      • SUPPRESS-GPS
      • DECLINATION
      • SET-SPEED-OF-SOUND
      • SET-VELOCITY-ADJUSTMENT
      • SEND-GPRMC
      • SEND-DVEXT
      • SEND-DVKFA
      • SEND-DVKFB
      • SEND-FREEFORM
      • SEND-DVPDL
      • RETWEET-GPS
      • RETWEET-IMU
      • SET-SENSOR-ORIENTATION
      • GRAB-IMU-CAL
      • VOID-IMU-CAL
      • BAUD-RATE
      • IP-ADDRESS
      • HOST-ADDRESS
      • MAVLINK-ADDRESS
      • FALLBACK-ADDRESS
      • UNICAST-TO-ME
      • PAUSE
      • RESUME
      • REBOOT
    • Blue Robotics Ping360 Discovery Protocol (Ethernet Only)
    • ARP (Address Resolution Protocol)
    • DHCP (Dynamic Host Configuration Protocol)
    • Ping (Internet Control Message Protocol Ping)
    • Mechanical Drawings
      • Mounting Dimensions, Sensor Head
      • Mounting Dimensions, Electronics Stack
      • RAM Mount Adapter Plate
      • Electronics Stack Assembly Drawing
      • Mounting Bracket for 300m Electronics Enclosure
      • Mounting Bracket for Sensor Head or Electronics Enclosure, fits BlueROV2 Heavy Thruster Guard
      • Mounting Bracket for All-in-One Enclosure, fits BlueROV2 Heavy Thruster Guard
      • Mounting Dimensions, Cerulean 300m Enclosure
      • Mounting Dimensions for the Cerulean All-in-One Enclosure
      • Mounting Dimensions, Cerulean GPS
  • Electrical Drawings
    • Serial Cable Supplied with Baseline Electronics Stack
    • DVL Serial Connection Example
    • Power over Ethernet (POE) Cabling
    • Standard Ethernet Pinouts
    • Optional GPS Wiring
    • Sensor Head Wiring
    • Using External Power with Serial Cable
    • Serial to USB Interface Using Blue Robotics BLUART Board
  • CAD Models
  • Appendix – Coordinate Systems
  • Copyright
Powered by GitBook
On this page
  1. Mounting the DVL Components

All-in-One and Most-in-One Mounting Considerations

PreviousSensor Head Side-Tracking Mounting AlignmentNextMounting the Electronics Stack

Last updated 3 years ago

The All-in-One and Most-in-One configurations have mounting constraints based on visibility of the sensor to the bottom, and the GPS (if referring to the All-in-One) to the sky when surfaced. See the next four figures for examples.

Side view of an all-in-one DVL mounted on the thruster guard of a BlueROV2 Heavy. The all-in-one DVL can be challenging to mount; the GPS needs to be emergent when the ROV is surfaced; the unit needs to be positioned away from magnetic fields; and the sonar beam cones need to be unobstructed.
Front view of the all-in-one DVL mounted on the thruster guard of a BlueROV2 Heavy. The sonar cones are accurate to scale for the minimum fly altitude of 30 cm from sensor to bottom. The port-side sonar beam clears the side and bottom panel of the ROV housing. See also next figure.
A bottom view of the all-in-one DVL mounted on the thruster guard of a BlueROV2 Heavy, showing the port sonar cone clearing the ROV housing. In real life the sonar beams are not nicely hard-edged like the illustration. You may need to experiment to find the current mounting location.
View looking straight up the port sonar beam. This configuration also shoots through the payload sled, if there is no payload in the beam path.